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Stochastic mechanics may be regarded as both generalizing classical mechanics 
to processes with intrinsic randomness, as well as providing the sort of detailed 
description of microscopic events declared impossible under the traditional 
interpretation of quantum mechanics. It avoids the many conceptual difficulties 
which arise from the assumption that quantum mechanics, i.e., the wave 
function, provides a complete description of (microscopic) physical reality. 
Stochastic mechanics presents a unified treatment of the microscopic and 
macroscopic domains, in which the process of measurement plays no special 
physical role and which reduces to Newtonian mechanics in the macroscopic 
limit. 
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1. I N T R O D U C T I O N  

Cons ide r  an e lec t ron in fhe g round  state of the hyd rogen  a tom.  We have 
all been t augh t  tha t  we should  not  ask for a deta i led  descr ip t ion  of  the 
behav io r  of the e lec t ron beyond  wha t  is p rov ided  by the g round-s t a t e  wave 
function. If  this is so, it mus t  be because  the e lec t ron is not  the sort  of 
poin t l ike  ent i ty  that  can be rega rded  as a lways  having  a definite posi t ion.  
Of course,  we should  no t  be too  surpr ised  if concepts  of a sort  comple te ly  
different from those a p p r o p r i a t e  for the desc r ip t ion  of mac roscop i c  real i ty  
are  requi red  for the mic roscop ic  realm,  which is so r emote  from our  
immedia t e  experience.  However ,  some exp lana t ion  is required of  why, 
whenever  we try to locate  an electron,  we find it at  a well-defined posi t ion,  
as if the measu remen t  process  itself somehow conver ts  our  e lec t ron into an 
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object that, for a short time at least, is the sort of thing that does have a 
definite position. Though it is natural to ask how this comes about, we are 
often told that this, too, should not be asked. But the inadmissability of 
this question cannot arise from the electron's unfamiliarity--it is 
reasonable to ask of any object, whether familiar or not, why it behaves as 
it does but rather from its being no object at all. That is, we must believe 
that in microscopic physics we do not describe an objective reality, which 
has an existence independent of the observer, but rather we describe 
relations between our observations--between, that is, subjective mental 
states. But then how objective can macroscopic reality be, constructed, as it 
is, out of the microscopic? 

If we do persist in asking, as most of us are inclined to do, how, by 
observing an electron, we produce an object at a definite position, we 
presumably answer the question by treating the process of measurement 
quantum mechanically. But then we find the situation becoming much 
worse than we bargained for: The quantum mechanical treatment of the 
measurement process transfers our original difficulty about the sort of thing 
an electron is to the level of macroscopic objects. We find that the "poin- 
ter" of our measuring apparatus is, after the measurement, in a quantum 
state described by a superposition, the terms of which correspond to dif- 
ferent positions of our pointer. It thus appears that macroscopic objects, 
too, are not the sort of things that we thought they were; and it is, of 
course, much more difficult to accept this of familiar macroscopic reality 
than of electrons. 

But even if we accept this of macroscopic objects, our problems are 
not over, because the dynamics of quantum mechanics still gives us no hint 
as to how the statistical outcomes of the measurement process arise. When 
we perform repeated identical measurements on a system, always in the 
same initial state, we typically get different answers; the statistical dis- 
tribution of these answers is consistent with the probability interpretation 
of the wave function. But it does not appear to be consistent with the quan- 
tum mechanical time evolution provided by, say, Schr6dinger's equation, 
which is completely deterministic. It thus appears, as Bohr (~) has 
emphasized, that quantum mechanics should not be regarded as providing 
a description encompassing the macroscopic as well as the microscopic 
realm. (It is true that the many-worlds interpretation (21 of quantum 
mechanics claims to reconcile quantum dynamics with quantum 
probabilities, but in addition to being extremely bizarre, it does not appear 
to succeed.) 

I wish to describe a theory, stochastic mechanics, which answers all 
the questions just raised, and many more; and does so in a way that is so 
simple and natural that the first reaction of the reader, after understanding 
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the argument, should be that there must be a mistake somewhere, that it 
cannot all be so simple. As of yet, ! have found no mistake. 

Stochastic mechanics was discovered by F6nyes (3~ and developed and 
put into its modern form by Nelson. (4-6/ The version of stochastic 
mechanics I wish to describe here is mathematically Nelson's, but concep- 
tually perhaps somewhat different. Nelson regards stochastic mechanics as 
arising from a deeper, purely classical theory, while I wish to suggest that 
we consider stochastic mechanics as standing on its own; that we suppose 
that stochastic mechanics is the theory, and see where this leaves us. When 
we do this we find that stochastic mechanics retains most of the valuable 
insights associated with quantum mechanics, while avoiding aspects that 
are unpalatable, if not incoherent. We see how and why the observer plays 
a critical role, and why composite systems must often be regarded as 
somehow defining an indivisible whole. We avoid such embarrassments as 
the abandonment of objective reality, the introduction of a fundamental 
role to be played by consciousness, (7) the problem of the collapse of the 
wave packet, and the need to posit an inescapable separation between a 
classical observer and a quantum system. Stochastic mechanics provides a 
detailed description of how the uncertainty principle arises, not in terms of 
the abandoned theory, as in Heisenberg's explanation using classical 
mechanics, but rather solely in terms of the new theory itself. Moreover, it 
encompasses both the macroscopic and microscopic realms, and in the 
macroscopic limit reduces to classical mechanics. We also see, and this is 
directly built into stochastic mechanics, how probabilities arise, and we get 
a clear picture of the status of the collapse of the wave packet. Finally, we 
can see how, without directly trying to do so, the limitations set by Bell's 
inequalities are naturally overcome. 

In what follows I hope to explain what stochastic mechanics is, and 
how it accomplishes all I have claimed for it. I begin, in Section 2, with a 
very brief description of quantum mechanics. In Section 3, I discuss some 
of the familiar paradoxes arising from the assumption that the wave 
function provides a complete description of the phenomenon under 
investigation. The discussion of stochastic mechanics begins in Section 4 
with a brief description of the theory, and continues in Sections 5 and 6 
with a consideration of the two-slit experiment in stochastic mechanics and 
a comparison of the derivations of quantum and stochastic mechanics. The 
key section is Section 7, which the measurement process is analyzed for 
stochastic mechanics. ! briefly discuss the uncertainty principle from the 
standpoint of stochastic mechanics in Section 8. Nonlocality is considered 
in Section 9, while Section 10 concerns topological effects. Section 11 is 
devoted to some additional remarks. Finally, in Section 12 I present some 
concluding remarks, closing with some conservative implications. 
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For simplicity, the discussion will be limited to the physics of the 
nonrelativistic Schr6dinger equation, and, for the most part, the Pauli 
exclusion principle will be ignored. 

2. Q U A N T U M  M E C H A N I C S  

In quantum mechanics, with a system of N particles we associate 
the Hilbert space ~ =L2(N3N). A state of our system is described by the 
wave function, a vector r e ~ f .  The dynamics is given by the unitary 
evolution U,: ~ ~ Jr', ~0--* 0~, where U =  e x p [ - i ( t / h )  HI, with H =  
-(h2/2m) A + V, if the particles have mass rn and interact via the potential 
V. This evolution is, of course, deterministic. 

The predictions of quantum mechanics are determined by the follow- 
ing statement: 

(*) Iffl(x)lZdx = the probability of finding the configuration of the system 
in dx about x E R 3N. 

To the extent that every measurement is ultimately a position 
measurement, ( ,)  suffices for all predictions. 

3. T H E  P A R A D O X E S  

The familiar paradoxes associated with quantum mechanics arise from 
the assumption, implicit in the traditional interpretations of quantum 
mechanics, that ~ provides a complete description of the system, omitting 
no facts. 

Let us consider the measurement process. Here we regard our system 
together with the measuring apparatus as a composite system, to be treated 
quantum mechanically: System| = Composite. If the initial 
system state is ~ and the initial apparatus state is ~b, then for the initial 
state of the composite system we have 

r174162 

The quantum mechanical evolution, when applied to this initial state, leads 
to a final state of the form 

in which the system is correlated with the apparatus. For example, for 
N =  1, suppose 

0 = (0,  + 
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is a superposition of a wave function tpl supported to the left of the origin 
and 0r supported to the right. If we want to determine whether our particle 
is on the left or the right, we use an apparatus such that 

@~.= [(~' , |  ~ , )+  (~'r | ~ r ) ] / , j 2  

= (•, + e r ) / , f 2  

Here, we may think of the apparatus as having three relevant states: ~b, in 
which the "pointer" points straight up; ~b~, in which it points to the left; and 
~b r, in which it points to the right. 

Note that ~0f is a superposition, a pure state, not a mixture; while after 
the measurement we expect (and get) a definite result, either l or r. How 
does this come about? It is customary at this point to invoke a new prin- 
ciple, incompatible with the unitary evolution of quantum mechanics, 
namely "the collapse of the wave packet." We are thus faced with the 
problem of reconciling this principle with the assumed completeness of the 
@( description. 

The usual sorts of answers one finds are the following: 

1. The measurement process must be treated classically. (1) 
The natural response to this is: Why? And how is this consistent with 

the completeness assumption? 

2. In order to learn whether the apparatus reads 1 or r, we must 
make a further observation. 

The problem with this approach is that it leads to an infinite regress, 
or to the many-worlds interpretation of quantum mechanics, neither of 
which is particularly congenial. 

Here is another problem with 2: It is not pleasant to think of 
macroscopic objects as being in schizophrenic states. In fact, we may 
replace our apparatus with a cat and arrange that 

l ~ dead, r ~-, alive 

and obtain the paradox of Schr6dinger's cat./8) Or we may allow our 
apparatus to be a person, with 

l +--, person read l, r +-+ person read r 

and obtain the paradox of Wigner's friend (7) (see also Ref. 9). 

3. We may replace cbf by the obvious mixture (density matrix) 
because they are observationally equivalent, since, to all intents and pur- 
poses, interference is impossible between ~b l and ~br. (1~ (The basic difference 
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between a mixture and a superposition is that the possibility of interference 
is lost in the mixture.) In one version of this response, one takes the 
thermodynamic limit and argues that in this limit the pure state in fact 
converges weakly to a mixture. (11) 

The problem with this answer is that our composite system, however 
large it may be, is not infinite, and hence is in a pure state. (It is important 
for the reader to understand the difference between the role of the thermo- 
dynamic limit here and in statistical mechanics.) The main problem, the 
completeness assumption, has not been addressed, for the following 
question has not been answered: How has the evident fact that after the 
measurement the pointer is in the definite state of pointing, say, to the left 
been created? 

4. S T O C H A S T I C  M E C H A N I C S  

I will first review classical mechanics very briefly. In classical 
mechanics, the state of our system of N particles is described by a point 
(X, p )  ~: /-' = ~3N X ~3N the phase space, and the time evolution 

r - - ,  r ,  (Xo, po) --' (x,, p,) 

is deterministic, and in fact is given by ordinary differential equations. 
Stochastic mechanics is a sort of mixture of quantum mechanics, 

classical mechanics, and diffusion theory. The state space in stochastic 
mechanics for our system of N particles is 

~3N X 

where the ~3N should be thought of as the configuration space of classical 
mechanics and )eg as the quantum Hilbert space. The state is thus given by 

The time evolution is given by the autonomous evolution of tp ~ ~ ,  which 
biases the evolution of x ~ ~3N: 

tP0 ~ ~Pt = Ut~O (quantum evolution) 
and 

dxt = b dt + (h/m) U2 dWt  (4.1) 

where Wt is standard Brownian motion (on ~3N), so that x, undergoes a 
diffusion process with drift b, which is related to ~k as follows: 

b - b ( x ,  t) = b(0) =-h v(R + s)  (42) 
m 
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where ~ = exp(R + iS). [-If the ith particle has mass mi, then m in the 
above equations should be regarded as the matrix, diagonal(mi), having mi 
in the diagonal slots allotted to the ith particle.l 

A key consequence of this choice of b is that if the probability density 
pt(x) of this diffusion process at some time t satisfies 

( , )  p~(x)  = I 4~,(x)l 2 

then ( , )  is satisfied for all later times. It follows, in view of the sufficiency of 
position measurements, that stochastic mechanics yields the same predic- 
tions as quantum mechanics, provided ( . )  is satisfied (for some past t). 

But why should (*) be satisfied? Can it be regarded as an additional 
constraint in the theory? If stochastic mechanics is to be regarded as 
standing on its own, and not as arising from some deeper theory, it makes 
no sense to regard ( , )  as an additional constraint, since p(x) is a classical 
probability density and ~ is a dynamical element of the theory. 

It can be shown, however, that whatever Po is, 

Irp,-I~,tt211-f Ip,(x)-10,(x)[21 dx 

is decreasing in time t, and in some cases it can be shown that it decreases 
to 0, in fact very quickly, so that ( . )  is effectively satisfied after a short 
time. It is also easy to find examples where this is not so; but it seems that, 
in fact, this does not matter, and that for all practical purposes we may 
assume (.). I do not wish to go into details here, but this assertion rests on 
the following observations: 

1. Since [IPt-[~,,r2rl is decreasing, if at any time in the past ( . )  is 
(approximately) satisfied, it will be (approximately) satisfied at all later 
times. Consider, for example, an electron in an excited state of the 
hydrogen atom. Then ][p,-1~121P need not decrease to 0, since (it can be 
shown that) the electron cannot diffuse across nodal surfaces (where 
q) = 0). But as soon as we ask how the electron managed to get itself into 
the excited state, we realize that it was presumably by excitation from the 
ground state, in which I[P~-I~,1211 quickly decreases to 0. 

2. As will be explained in Section 7, the measurement process 
provides us with information on the basis of which we should update p; 
the new probability density/3 so obtained will usually not satisfy (.). But, 
as will also be explained, we are also justified in updating 0, in effect 
collapsing the wave packet to ~, and if ( . )  were satisfied before the 
measurement, it will also be satisfied after the measurement, by/~ and ~. 
Moreover, even if ( . )  were not satisfied before the measurement, ]f/~- 1~[21[ 
will, on the average, be smaller than HPt-[0tt2H before the measurement. 
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Thus we have a second mechanism, the measurement process, which helps 
in bringing ( . )  about. 

The relationship between ~ and the diffusion process x, can be sum- 
marized by saying that ~ is a "pilot wave" which guides the motion of the 
coordinates x in such a way that x wants to be where IOl is large and tends 
to avoid regions where [Ol is small. 

5. T H E  T W O - S L I T  E X P E R I M E N T  

Stochastic mechanics thus provides a simple answer to the question 
that naturally arises in connection with the two-slit experiment: How does 
the electron, which, after all, passes through only one of the slits, know 
whether both slits are open, so that the arrival of electrons on a 
photographic plate behind the slits is described by an interference pattern, 
or whether only one slit is open, so that there is no interference? Whatever 
the electron may know, the wave function ~ with which it is associated, 
and which together with x provides a complete description of the electron 
in stochastic mechanics, does know: when both slits are open, ~ has the 
familiar interference profile, which guides the electron, i.e., the coordinates 
x, along channels to produce the pattern, while if one slit is closed, there is 
neither profile nor channels. 

6. D E R I V A T I O N S  

I wish here to compare briefly derivations of quantum and stochastic 
mechanics. 

In one derivation of quantum mechanics, the Poisson bracket { , } of 
classical mechanics is replaced by the commutator. In Schr6dinger's 
derivation, the energy and momentum are replaced by suitable differential 
operators in the energy equation. I mention these to emphasize how formal 
these derivations are. 

To derive stochastic mechanics, consider the class of general h dif- 
fusions, i.e., processes satisfying (4.1) with a general drift b, not necessarily 
satisfying (4.2). Then stochastic mechanics [-i.e., h diffusions satisfying (4.2) 
for some solution ~ of Schr6dinger's equation], with p t (x)=  itP,(x)i 2, is 
what arises from the stochastic version of: 

(i) Force = mass x acceleration. (4,5) 

Or 

(ii) The Lagrangian variational principle. (~2"13) 
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Thus, stochastic mechanics does not arise merely in a formal way, but as a 
natural extension of classical mechanics to processes with "intrinsic 
randomness." 

7. T H E  M E A S U R E M E N T  P R O C E S S  

Let ~i = 0 | ~b be the initial wave function for the composite of system 
and apparatus, as in Section 3. Then in stochastic mechanics the complete 
initial state is given by 

((x, y), ~, | ~) 

where y describes the apparatus coordinate. In the example of Section 3 
involving 0l and 0r, on which we shall, for simplicity, focus here, the initial 
value of y is the initial position of the pointer, namely T- The possible final 
(postmeasurement) states, which arise from the diffusion of (x, y) under q~, 
are of the form 

(x, l; qsr) if x is on the left (x ~ l) 

(x, r; @r) if x is on the right (x ~ r) 

where, for simplicity, we assume that the apparatus has but two final posi- 
tions, l and r. (It would be more accurate to regard l and r as describing 
ranges of values for y.) 

That (x ~ l, y = l) and (x e r, y = r) are the only possibilities already 
follows from the structure of ~j. [and the assumption ( .)  of Section 4]; it is 
not necessary to analyze the evolution in detail. We should also arrange, by 
proper choice of apparatus, that x does not change (much) during the 
measurement, if we wish to regard the result of the procedure as conveying 
clear information about the position x of the particle before the 
measurement. 

Moreover, collapse of the wave packet, i.e., replacing, say, q5 i by q5 l 
when we find that y e l, is justified by the observation that the evolution of 
(x,, y,) beginning at (x ~ l, y = l) under ~t  should be the same as under ~b s. 
45/is a disjoint superposition, q~f= (q5l+ qSr)/X/2, with 45 l and (b r having 
disjoint supports, the terms of which correspond to different readings of the 
apparatus. Moreover, since ~t and ~r correspond to incompatible 
macroscopic situations, the superposition should remain (approximately) 
disjoint at all later times. (It might be useful here to keep macroscopic 
irreversibility in mind, and/or to think of y = l as a written record.) From 
this follows the (near) impossibility of the coordinate--(x, y)--diffusion 
crossing the "boundaries" of the supports, i.e., passing from the support of 

822/47/5-6-4 
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q~t to the support of ~r. Thus, if y = l immediately after the measurement, 
the coordinates (xt, yt) will remain in the support of q~l, where the drift b 
knows (essentially) nothing of q~r, for all later times. 

In other words, explanation 3 of the paradoxes (see Section 3)--that 
collapse is justified because of the practical impossibility of interference (~~ 
(see also Ref. 14) more or less works in stochastic mechanics, where 
alone is not a complete description, nor even, from a macroscopic perspec- 
tive, the most important part of the description. In stochastic mechanics, 
the fact that y = l  is not created by collapse. The stochastic mechanical 
description already embodies this fact prior to collapse; or, more precisely, 
regardless of whether, for the sake of convenience, we choose to collapse. 

Since this is an important point, let me, at the risk of belaboring, 
restate it. The q> result of a (quantum) measurement is a disjoint super- 
position, the terms of which correspond to different readings of the measur- 
ing device. More or less by explanation 3 of the paradoxes, according to 
which the superposition can be replaced by a mixture after the 
measurement, the superposition will remain forever (approximately) 
disjoint. Corresponding to the disjoint superposition of qs, we obtain a 
disjoint decomposition of the drift b, as well as the impossibility of the 
diffusion crossing supports. Hence, collapse, if desired, is justified. 

Though the analysis given above was for a position measurement of a 
particularly simple kind, any position measurement can be treated in a 
similar manner. Thus, from the perspective of stochastic mechanics, there is 
nothing particularly strange about position measurements. These roughly 
follow the lines of a "classical" measurement prescription. We measure the 
position of a (microscopic) particle by allowing it to interact with a device 
which, without (much) affecting the particle's position, establishes a strong 
correlation between this position and that of a macroscopic object, so that 
by looking at the latter we (more or less) know the former. 

There are, nonetheless, fundamental differences between purely 
"classical measurement" and measurement in stochastic mechanics. First of 
all, in stochastic mechanics, as in quantum mechanics, for measurements 
other than of position, e.g., momentum measurements, the measurement 
process can usually not be regarded as revealing something that already 
exists, but rather, at best, must be regarded as creating what did not exist 
prior to the measurement. Moreover, if one takes into account its effect 
upon the wave function of the system under observation, then even for 
position measurements the measurement process cannot generally be regar- 
ded as leaving the system essentially undisturbed. While I do not wish to 
go very deeply into these matters, a brief consideration of the uncertainty 
principle in stochastic mechanics might be appropriate at this point. 
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8. T H E  U N C E R T A I N T Y  P R I N C I P L E  

Diffusing particles do not have a well-defined instantaneous velocity. 
Thus, an aspect of the uncertainty principle is built into the structure of 
stochastic mechanics. But one can do much better than this. 

Shucker (15) has shown how to define the momentum as a random 
variable on path space in stochastic mechanics. Not  determined by (x, ~), 
the momentum corresponds, roughly speaking, to the long-time asymptotic 
average velocity that would arise if the initial wave function were allowed 
to evolve freely. Thus defined, the momentum has the distribution given by 
quantum mechanics--hence, the uncertainty principle. 

Moreover, one has in stochastic mechanics a detailed description of 
how, in obtaining sharp position information, we must destroy sharpness 
in momentum. In fact, the states of sharply defined momentum correspond 
to wave packets with sharp wave vector. The result of a precise position 
measurement will be, after collapsing, as discussed above, an approximate 
6-function, i.e., a broad superposition of wave packets with a wide range of 
wave vectors, a state that even in stochastic mechanics does not have a 
well-defined momentum; a state about which there is no fact of the matter 
as to the value of the momentum, since this is simply not embodied in the 
(x, 0) description resulting from the measurement. On the other hand, a 
momentum measurement would produce a wave packet, embodying a 
(fairly) well-defined momentum, where none existed prior to the 
measurement; this would lead, of course, to a loss of position information if 
the position variance were small before the measurement. But it should be 
noted again that while the momentum measurement leads to a destruction 
of position information, the position itself is not destroyed: the position is 
embodied in (x, ~,). (A more detailed analysis of the relationship between 
position and momentum uncertainties arising from measurement in 
stochastic mechanics would be in accordance with the Heisenberg 
uncertainty relation Ap Aq >>. h/2. ) 

9. N O N L O C A L I T Y  

Stochastic mechanics is nonlocal: it involves instantaneous effects 
between components of a system that do not diminish as the distance 
between the components grows. This can easily be seen directly--the wave 
function is, after all, a nonlocal entity. But I prefer to argue as follows. 

Quantum mechanics, as well as any theory whose predictions agree 
with those of quantum mechanics, is nonlocal: Consider a widely separated 
pair of spin-l/2 particles (particle 1 and particle 2) in the singlet (s = 0) 
state. Once I measure any spin component of particle 1, I also know the 
same component for particle 2. Either this component for particle 2 (or, 
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more precisely, the fact that this component has the value we now know it 
to have) did not exist before the measurement, in which case we have a 
stark violation of locality, since a distant action would have caused 
something to pop into existence instantaneously; or the component, and 
hence all spin components, had well-defined values, i.e., were "elements of 
reality, ''~6) before the measurement. In the latter case we say we have 
"hidden variables" (HV). What I have just described is a reformulation of 
the famous Einstein, Podosky, Rosen (EPR) argument. ~16'17) I summarize: 

(i) EPR: locali ty+ quantum mechanics ~ HV 

But Bell's inequality, ~18) which must be satisfied by any local HV theory for 
the spin components of our particles, is violated by quantum mechanics: 

(ii) Bell: locality + quantum mechanics ~ n o  HV 

The obvious conclusion of (i) and (ii) is that quantum mechanics, or any 
theory whose predictions agree with those of quantum mechanics, is 
nonlocal. Moreover, since Aspect's experiments ~9) verify the quantum 
mechanical predictions violating Bell's inequalities for spin correlations, 
nature is nonlocal. 

Thus, since its predictions agree with those of quantum mechanics, 
stochastic mechanics (at least the extension of what I have described which 
incorporates spin; see Refs. 6 and 20) must be nonlocal. And, as stated 
above, this can easily be directly checked even for stochastic mechanics 
without spin, which I have been discussing. This is indeed a good thing for 
stochastic mechanics, if, as I have argued, nature itself is nonlocal. 

(It might be instructive for the reader at this point to employ the 
analyses of Sections 7 and 8 to see how the EPR phenomenon, in its 
original form involving just the positions and momenta of two particles, r 
appears in stochastic mechanics.) 

The nonlocality argument is usually presented differently: It is obser- 
ved that since stochastic mechanics can be regarded as a HV theory, whose 
predictions agree with those of quantum mechanics, it follows from Bell's 
inequality that it must be nonlocal. I believe that, while correct, this 
argument, by apparently blaming hidden variables for nonlocality, lets 
quantum mechanics off too easily. 

Though the version of stochastic mechanics I have discussed is non- 
relativistic, the nonlocality it embodies, since it does not diminish with 
distance, would presumably also be present in a relativistic version. But 
how would this nonlocality then be compatible with Lorentz invariance? 
To get a handle on this question, we must look more carefully a t  the nature 
of the nonlocality occurring in stochastic mechanics (or, for that matter, in 
quantum mechanics). 
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The most problematic sort of nonlocality occurring in stochastic 
mechanics is the following: Consider two widely separated components 
of a composite system. Then the marginal distribution on trajectories for 
one of the components, i.e., the marginal process for the coordinates of 
that component, will in general be more or less immediately affected 
by a "measurement" performed on the other component. Different 
measurements on one component will lead to different marginals for the 
other component. (Note that I have said nothing about the conditional 
process for one component, given the result of the measurement on the 
other component.) The marginal single-time distributions will not, 
however, be affected by the measurement on the other component; 
according to quantum mechanics, they cannot be: the reduced density 
matrix for one component is not affected by measurements performed on 
the other component. 

Now if it were possible to observe the trajectories of one component 
without disturbing them, so that the statistics of observed trajectories agree 
with the predictions of stochastic mechanics, then, using many copies of 
our two-component system, it would be possible to transmit information 
with arbitrarily large velocity, which is incompatible with special relativity. 
But such observations cannot be performed in stochastic mechanics: as 
soon as an observation is performed at one time, the wave function is 
affected and future statistics are altered. When the effect of measurements 
on the position statistics is taken into account, one finds that the nonlocal 
dependence on measurements performed on the other component vanishes. 
Again, we know this must be so, because the predictions must agree with 
those of quantum mechanics, for which we know that information cannot 
be transmitted faster than the speed of light. 

The nonloeal effects of stochastic mechanics arise basically from the 
nonlocal nature of the wave function, and the nonlocality "problem" in 
stochastic mechanics is thus no worse than in quantum mechanics, at least 
if the wave function is taken seriously. Moreover, if the wave function is 
not taken seriously, i.e., if realism is abandoned, then it is hard to see the 
force of the demand for locality, except to ensure consistency with Lorentz 
invarianc~, which is presumably ensured in stochastic mechanics, as in 
quantum mechanics, by the fact that the effects under consideration, 
whatever their interpretation, convey no information. Furthermore, it is 
hard to imagine how, as urged by some in discussions of quantum 
mechanics, the denial of reality, whatever this may mean, can lead to a 
consistency otherwise absent. At the very least, it would seem that the 
burden should be, perhaps, on those advocates of traditional quantum 
mechanics who maintain that nonlocality is unacceptable, to explain why 
this is so. 
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10. T O P O L O G I C A L  EFFECTS 

In stochastic mechanics, topological effects arise very simply and 
naturally. I will illustrate this with two examples, the Aharanov-Bohm 
effect and quantum statistics. 

10.1. The A h a r a n o v - B o h m  Effect  

Consider a particle moving in the configuration space Q= ~ 3  
{x 2 + y2 <~ 1 } obtained by removing from three-dimensional space the unit 
vertical (solid) cylinder. What are the conservative diffusions, the processes 
that satisfy the stochastic version of F=ma ,  in this situation, where the 
configuration space Q is not simply connected? (Strictly speaking, by 
"conservative diffusions" I mean only those solutions to the stochastic 
Newton equation or variational equation for which the drift b in the region 
p > 0 is locally a gradient. This will automatically be the case for diffusions 
critical in the sense of Guerra and Morato. ~6'13)) It is easy to see, since con- 
servative diffusions are, in fact, defined by local equations, that in addition 
to the processes governed by a wave function ~ on Q, one also has 
processes governed by a wave function ~ on Q, the universal covering 
space of Q, provided that ~ at any "level" in Q is obtained from ~ at the 
level just below by multiplication by a factor 7, 171 = 1. (The wave functions 
restricted to the various levels thus define the same diffusion process on Q, 
since multiplication of the wave function by a constant does not affect the 
corresponding diffusion.) We thus have, given ~ on Q, a one-parameter 
family of conservative diffusions, labeled by 7. 

Consider now sending in a plane wave ~ parallel to the x axis, from 
x = -oe.  Then, for 7 = 1, we obtain an interference pattern for the distri- 
bution of particles arriving at a screen on the other side of the cylinder. 
For 7 r 1, we must form a "plane wave" ~ on (~ by setting ~k = ~ ,  where 
~k is ~ restricted to level k. Then, letting ~ evolve according to 
Schr6dinger's equation on (~, we obtain a shifted interference pattern, since 
components of ~ that go around different sides of the cylinder and reach 
the screen at the same level of Q must have originated on different levels, 
so that when 7 ~ 1, phase relations between these components are shifted. 

Now the one-parameter family just described precisely corresponds to 
the family of solutions obtained by Aharanov and Bohm (21) for the 
situation in which the cylinder contains a magnetic field B parallel to the z 
axis (and the charged particle cannot penetrate the cylinder). In this 
correspondence l o g T ~ i ~ d x d y B .  Aharanov and Bohm wished to 
emphasize through their analysis the fact that in quantum mechanics the 
vector potential can produce effects in situations where the particle does 
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not experience any forces. The point ! wish to emphasize is that with 
stochastic mechanics the possibility of the phenomenon predicted by 
Aharanov and Bohm arises for free motion, with no fields at all--not even 
the vector potential--in the non-simply-connected region Q. And it seems 
quite appropriate that the existence of an "inaccessible hole," whose 
removal renders the topology of the configuration space nontrivial, should 
give rise to an ambiguity that corresponds to the details of the physics 
inside the hole, even if this physics classically leaves no trace of itself (i.e., 
forces) outside the hole. 

(One might argue that the same family could be obtained directly in 
quantum mechanics by allowing multivalued wave functions or by 
considering the various evolutions corresponding to the different self- 
adjoint extensions of the Laplacian on nice functions with support inside Q 
with the half-plane {y = 0, x ~> 1 } removed. But these possibilities do not 
appear to be particularly natural, while in stochastic mechanics the 
question as to whether the corresponding possibilities are natural is not 
really appropriate; they simply must be considered, since they all define 
conservative diffusions.) 

1 0 . 2 .  S t a t i s t i c s  (6> 

Consider now the configuration space Q of n indistinguishable, non- 
coincident, particles moving in physical space N3. The space Q is not 
simply connected; its universal covering Q is r~3,, the usual configuration 
space with coincidences removed. Thus, just as in Section 10.1, conservative 
diffusions are governed by wave functions ~ on Q, which are such that for 
configurations related by a permutation n of {1,..., n} the corresponding 
values of ~ are related by a factor 7(n). Moreover, since 7(7c), as is easy to 
see, must be a character of the permutation group S,, there are but two 
possibilities: ~/(n)= 1, which corresponds to symmetric wave functions, and 
'/(n) = ( - 1 )  I~l, corresponding to antisymmetric wave functions. Thus, the 
set of wave functions ~ defining conservative diffusions is not itself a linear 
space; rather, it is the union of the linear spaces ~symmetric and ~antisymmetric- 
In this way, the two familiar possibilities for quantum statistics arise 
naturally, indeed inevitably, in stochastic mechanics. 

The previous two examples illustrate that conservative diffusions on a 
configuration space Q that is not simply connected are governed by wave 
functions, on the universal covering space Q, with "phase relations" given 
by a character of the fundamental group of Q. 
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11. ADDITIONAL REMARKS 

11.1. Breaking of Unitary Symmetry 

Unitary symmetry does not survive the transition from quantum 
mechanics to stochastic mechanics, in which position has a special status. 
Since this symmetry is clearly broken, and the primacy of position is so 
manifest, in the world as we experience it, it is not at all clear that this loss 
is a defect. (Those who are particularly fond of unitary symmetry should 
bear in mind that it is respected, of course, by part of stochastic mechanics, 
namely the purely quantum part.) Nonetheless, it is natural to ask whether 
something akin to stochastic mechanics can be constructed using obser- 
vables other then position. This seems to be possible, (32~ though processes 
beyond diffusions will in general be required, since the Hamiltonian will 
usually not be in "diffusion form" when expressed in other representations. 
However, these processes, and the theories, the "versions" of stochastic 
mechanics, of which they will form a part, will in no sense be equivalent to 
the usual stochastic mechanics I have described, which is based on the 
position representation. 

To clarify this point, it is perhaps worth considering the harmonic 
oscillator. Here position and momentum play completely symmetric roles, 
so that a stochastic mechanics based on momentum can be defined just as 
for position. One then obtains a diffusion process for the momentum, 
whose time integral should be the position process. But this position 
process is certainly not the same process as the one arising directly from 
the usual stochastic mechanics based on position, since the former has dif- 
ferentiable paths and the latter does not. Moreover, this new position 
process will tend to have a distribution that spreads toward infinity, even 
for bound states ~, in disagreement with quantum mechanics. In fact, for 
the ground state the diffusion process for the momentum is the Ornstein- 
Uhlenbeck velocity process, (5) which gives rise to a mean-squared dis- 
placement for the position that grows linearly for large times. 

Thus we see that a stochastic mechanics based on other represen- 
tations, e.g., momentum, need not be in agreement with quantum 
mechanics. In view of the unitary symmetry at the level of quantum 
mechanics itself, this may appear somewhat paradoxical. The reader 
should, however, bear in mind that a key ingredient in the argument that 
the predictions of stochastic mechanics agree with those of quantum 
mechanics is the observation that every measurement is ultimately a 
position measurement, which is clearly not true for momentum. 
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11.2. ~u As Generalized Velocity 

The role of the wave function ~ in stochastic mechanics is in some 
sense analogous to that of the velocity in classical mechanics. The introduc- 
tion of the velocity as a basic dynamical variable was once regarded as 
counterintuitive(22): how can there be more to the description of the state 
at an instant beyond a complete description of instantaneous positions? 
Nonetheless, the inclusion of velocities in the state description leads to a 
simpler time evolution, in fact a deterministic evolution given by first-order 
ordinary differential equations. Similarly in stochastic mechanics the 
inclusion of ~ in the state description leads to (first-order) stochastic 
differential equations. In classical mechanics the velocity is the extra 
ingredient necessary to determine the future evolution, while in stochastic 
mechanics the wave function ~ is required to determine the future 
stochastically: once ~ is specified, we have a Markov process. 

11.3. Generalized Probability Interpretation 

Stochastic mechanics can be regarded as generalizing Born's 
probability interpretation of ~: Whereas Born tells us that [~,(x, t)r 2 for 
fixed t is the probability density for the position at time t, stochastic 
mechanics tells us how to extract from ~ the probability distribution, on 
path space, for complete trajectories (x,)t~o. However, the conceptual 
details are quite different in the two cases. 

For Born ]~12 is the distribution, not of an objective, independently 
existing quantity, but merely of what is "measured." On the other hand, 
stochastic mechanics provides the distribution of (what it regards as) an 
objective entity, the trajectory, which, however, is unobservable. Finally, 
the position at a fixed time is, for stochastic mechanics, both observable 
and objective. 

11.4. The Macroscopic Limit 

If we analyze the motion of macroscopic objects using stochastic 
mechanics, we find (23) that they are undergoing diffusion processes that can 
be very well approximated by classical mechanics. In particular, the only 
"component" of the wave function ~ relevant in the macroscopic limit can 
be represented by a single vector, which we call the velocity. 

11.5. Causal Interpretation 

Stochastic mechanics, as I have presented it, has a great deal in com- 
mon with the causal interpretation of quantum mechanics proposed by 
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David Bohm. (24'25) Here I wish only to mention two important differences. 
First, Bohm's theory is completely deterministic. Some would regard this as 
an asset, others a liability. Second, it seems to me that only stochastic 
mechanics can be regarded as a completely natural generalization of 
classical mechanics, to processes with "intrinsic randomness." To what 
natural domain is Bohm's theory a generalization of classical mechanics? (I 
hope the reader understands why the answer, "to the microscopic," is not 
satisfactory.) 

11.6. The Many-Worlds Interpretation 

The advocates of the many-worlds interpretation of quantum 
mechanics claim that theirs is the only interpretation consistent with 
Schr6dinger's equation alone, without additional (measurement) 
postulates. In this interpretation, "measurements" cause the universe to 
"branch" into as many copies as the wave function has "components." 
Apart from its bizarre character, this interpretation suffers from two very 
serious defects: (i) the "branching" should depend upon a choice of basis, 
and (ii) its derivation of the probability interpretation of 14`12 in situations 
in which the various "outcomes" are not equally likely involves the 
circularity of asserting that small I1" IL 2 means small "fraction of the worlds." 
To overcome these difficulties, position coordinates would have to be 
regarded as special, and an interpretive assumption would have to be 
adopted: that the "number of worlds" is proportional to tamplitudel 2. This 
is already close to stochastic mechanics. In fact, if one takes branching 
seriously in the many-worlds interpretation, i.e., if one requires the theory 
to identify the evolution of a single world through time and branches, then 
we might as well simply say that the position coordinates are undergoing a 
stochastic process whose marginal single-time distributions are given by 
t4'12. Then stochastic mechanics provides a natural description of the full 
process, which, however, is not completely determined by the single-time 
marginals alone. [If one does not take the branching seriously, the many- 
worlds interpretation becomes much stranger still, because then the notion 
of the same observer (over time) is an illusion--it just s e e m s  that we belong 
to a consistent history because memory has this feature (consistency) built 
in.] 

11.7. Reversibility 

Just as Newtonian (or Einsteinian) mechanics is strictly reversible 
(t ~ - t ,  v ~ - v  maps solutions to solutions), so is stochastic mechanics 
( t ~  - t ,  ~ ~ ~* maps conservative diffusions to conservative diffusions). 
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(This is not true of all formulations of stochastic mechanics, but it is true of 
the one adopted by Nelson, which is based on a symmetric definition of 
stochastic acceleration, and is the one I have been discussing. Much, if not 
all, of what I have said prior to this subsection would apply as well to the 
other versions.) It might be argued that quantum mechanics is also strictly 
reversible, but this is true only if we identify quantum mechanics com- 
pletely with Schr6dinger's equation, ignoring measurement and collapse. 

11.8. A g r e e m e n t  w i t h  Exper ience  

Great care must be taken when trying to decide whether a theory 
"agrees with experience." I will illustrate this for stochastic mechanics with 
a simple example. 

Consider a macroscopic "particle" moving (in one dimension) between 
two walls, at 0 and at L, with completely sharp, large (macroscopic) energy 
E n (n large). Then ~n ~ sin(n~x/L), which has nodes that are extremely 
close together. Since the particle cannot diffuse across these nodes, it would 
appear to be at rest on the macroscopic scale, despite the fact that it has 
large energy. Should we regard this state of affairs as conflicting with 
(macroscopic) experience? 

Even if the preceding analysis were correct, there would be no conflict, 
since what we would experience is a particle apparently at rest, which we 
would regard as having zero energy, and there is nothing that contradicts 
experience in this. But the analysis is not correct, because in order to decide 
how the situation would appear, we must take into account the effect of 
looking at the particle, of illuminating it. And when we do this we find, as 
in the analysis of the measurement process in Section 7, that once the 
particle is observed, the effective wave function should be collapsed to a 
small wave packet; more precisely, 0n should be replaced by 0n multiplied 
by a modulating factor that vanishes outside of a small interval. But this 
effective wave function is a superposition of a left-moving and a right- 
moving wave packet, and after these wave packets separate the particle will 
be in the support of one of them, with which it will continue to move, with 
a macroscol~ic velocity corresponding to the energy Err. So what would, i n  
fact, be observed is precisely what should be observed for a particle with 
energy En. (Of course the particle is under continuous "observation" 
through interaction with photons, cosmic rays, etc., so that the "collapse" 
just described is always occurring, and the original wave function 0n is 
nonphysical.) 
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11.9. Exceptional Conservative Diffusions 

In some special situations there exist conservative diffusions that do 
not correspond to wave functions satisfying Schr6dinger's equation. For 
example, the conservative diffusions corresponding to the excited energy 
levels of the hydrogen atom, which have nodal surfaces, can be decom- 
posed into conservative diffusions supported in the connected components 
separated by the nodal surfaces. However, presumably the only conser- 
vative diffusions that are stable under small perturbations are those given 
by the "canonical formula," i.e., that arise in the canonical way from 
solutions to Schr6dinger's equation. The situation here is analogous to that 
in statistical mechanics: though in certain situations there are stationary 
states other than those given by the Gibbs formula, only the Gibbs states 
are stable. (26'27) 

11.10. Stochastic Completion 

The stochastic mechanics I have described could be called the 
stochastic completion of nonrelativistic, spinless quantum mechanics. 
Stochastic completions of other quantum theories have been obtained, 
incorporating spin, (2~ and including some field theories. (28) Of course, in 
constructing the stochastic completion of a theory, a decision must be 
made as to which variables are to undergo the stochastic process, but this 
may somehow be forced. 

It is, of course, not necessary that every quantum theory have a 
(satisfactory) stochastic completion, only those to be taken seriously. 
[-Thus, it would not be so bad if P(~b)2 had no satisfactory stochastic com- 
pletion.] It is presumably much too early to speculate about the stochastic 
completion of superstring theory. 

11.11. Wave-Part ic le Duality 

In stochastic mechanics the origin of wave particle duality is very 
clear. There is no need to invoke complementarity to preserve consistency. 

12. CONCLUSION 

Stochastic mechanics is both the natural generalization of classical 
mechanics to processes with intrinsic randomness, as well as a prescription 
for extracting from quantum mechanics, i.e., from the wave function, a 
detailed description of what the particles comprising a quantum system are 
doing between measurements. 

What does stochastic mechanics add to quantum mechanics? It asserts 
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that, in fact, the (position) coordinates actually exist and are doing 
something, even when unobserved. Moreover, what they are doing is very 
natural; the evolution of coordinates is described by a diffusion process 
that pops out when one looks for a generalization of F = m a  (or the 
Lagrangian variational principle) to systems with intrinsic randomness. At 
the same time, in so obtaining this diffusion process, Schr6dinger's 
equation itself naturally arises. 

Is there anything to object to in this? Well, has not Heisenberg (or 
Bohr) shown, by taking into account the irreducible disturbances arising 
from the existence of the quantum of action, that simultaneous position 
and momentum, and hence a detailed description of what is happening on 
the microscopic level between observations, is meaningless? But such 
reasoning, which has always been unsatisfying to many because of its 
positivistic, antirealistic flavor (not to speak of its using classical concepts 
--colliding billiard balls, etc.--to draw radical conclusions about a non- 
classical realm) must surely be fallacious; it claims to establish the 
impossibility of just the sort of detailed description provided, in a very 
natural way, by stochastic mechanics. [Concerning the Heisenberg 
argument, it might be asserted that due to sensitive dependence on initial 
conditions--as well as the very large number of degrees of freedom 
involved--detailed prediction of trajectories for particles in a classical gas 
is (in principle) impossible. Why does this assertion then not invalidate 
classical statistical mechanics, based as it is on classical mechanics? But, in 
fact, the situation is quite the opposite: it is the chaotic character of the 
motion that has traditionally been used to justify the methods of statistical 
mechanics. (29) ] 

It is true that we may not be able to check, through observation, the 
details of the description provided by stochastic mechanics, but this is quite 
another matter from asserting the impossibility of any such description, not 
to speak of denying the possibility that something is actually going on. (A 
positivist would presumably deny these distinctions.) Moreover, if one 
maintains that there can be no advantage in appending to quantum 
mechanics some unobservable elements, one need only recall the great 
many conceptual difficulties arising from quantum mechanics, all of which, 
I have argued, are dissolved by stochastic mechanics. [The paradoxes, in 
particular, can be regarded as a manifestation of an unbridgable gap 
between pure quantum mechanics and familiar (classical) reality. Stochastic 
mechanics bridges this gap in the simplest way possible, by incorporating 
the classical description, i.e., the coordinates.] This would seem a strong 
argument indeed for accepting an unobservable reality, which perhaps 
might never have been denied had the theory of stochastic processes been 
sufficiently well-developed at the time quantum mechanics was conceived. 
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It is true that the detailed description provided by stochastic 
mechanics is indeterministic. But it is generally accepted that with quantum 
mechanics we are already confronted with the fact that the laws of nature 
are indeterministic. Moreover, the emergence of randomness in the context 
of pure quantum mechanics is a mystery, while in stochastic mechanics it is 
obvious. Indeed, stochastic mechanics may be regarded as the theory that 
most naturally arises from the assumption that nature is intrinsically ran- 
dom. 

I will close on a conservative note. It is often claimed (3~ by sup- 
porters of its traditional interpretation that quantum mechanics marks a 
radical change in our world view, requiring, in fact, the abandonment of 
"realism"--the view that there is an objective reality, at least partially 
apprehended through scientific investigation. But if this theory does indeed 
necessitate profound changes in epistemology and metaphysics, then 
evidence of the strongest kind must be advanced on its behalf. The stranger 
or more radical (i.e., the smaller the a pr ior i  probability of) the proposal, 
the firmer must be the evidence. 

Now regardless of whether we accept stochastic mechanics as the 
correct description of microscopic reality, its very existence calls into 
question the validity of the radical claims of the traditionalists. How can 
quantum mechanics be more likely than a theory far less radical? The more 
the traditional supporter of quantum mechanics emphasizes how truly 
revolutionary quantum mechanics is, how profound a change it requires in 
our epistemology and our view of the objectivity of the (microscopic) 
world, the less sustainable that position becomes. [The same remarks 
apply (in spades) to those who advocate a (nonclassical) quantum logic 
interpretation of quantum mechanics.] 

It would seem more prudent to say that quantum mechanics (without 
philosophical additions) is a provisional theory that works remarkably welt 
and that presumably reflects important features of what is "really" going 
on, features that will be more fully appreciated in terms of, if not stochastic 
mechanics, a theory yet to be propounded. 
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